
CS3485
Deep Learning for Computer Vision

Lec 7: Convolutional Neural Networks

Announcements

■ Next week:
● I’ll be out in a conference from Monday to Friday and some important events there conflict with

our lecture times.
● Lectures will be asynchronous! I’ll post their videos on Monday.
● We’ll still have a quiz (I’ll test the Canvas version). You’ll have to finish it on Thursday.

■ Lab2:
● Lab grades are out, let me know if you have any questions!
● Don’t forget the default parameters!

■ Lab3:
● It is out! It will be due next Thursday.
● Things may get slower with the experiments. Make sure to use GPUs,
● Start earlier rather than later due to errors and bugs

■ A great resource for last lecture: 3Brow1Blue videos on Deep Learning!

https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi

(Tentative) Lecture Roadmap

Basics of Deep Learning

Deep Learning and Computer Vision in Practice

Intro to Object
Detection

Fast Object
Detection

Intro to Image
Segmentation

Autoencoders Advanced GANs

Applications of Detection
and Segmentation

Image Generation
with GANs

The Attention
Mechanism

Transformers
and ChatGPT

Intro to
Computer Vision

Linear Classifiers and
Perceptron

Multilayer Perceptron Pytorch I – MLPs Convolutional Neural
Networks

Optimization
in Deep Learning

Pytorch II – Images and
Regularization

Data Augmentation
and Deep CNNs

Inception Net and
what CNNs learn

Transfer Learning and
Residual Nets

Adversarial Examples
and Self-supervision

Intro to
MLOps

Image Generation
by Prompt

Misc.
Topics

Fashion MNIST

■ Last time, we used the MNIST dataset to try out our
Multilayer Perceptron (MLP) using PyTorch.

■ Today, we’ll try a more challenging Dataset called
Fashion MNIST (FMNIST).

■ It follows the same specs as MNIST: there are 70k
images (60k for training and 10k for testing) of size
28×28 of 10 classes.

■ Instead of handwritten digits, the data now is of
clothing articles and the classes are: T-shirt/top,
Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker,
Bag, Ankle boot.

■ Let’s see how our previous network performs in this
new data and take the time to review last class.

Loading the Data and DataLoaders

■ Let’s start by downloading the dataset:

import torch
from torchvision import datasets
from torch.utils.data import Dataset, DataLoader

device = 'cuda' if torch.cuda.is_available() else 'cpu'
fmnist_train = datasets.FashionMNIST('~/data/FMNIST', download=True, train=True)
fmnist_test = datasets.FashionMNIST('~/data/FMNIST', download=True, train=False)
x_train, y_train = fmnist_train.data, fmnist_train.targets
x_test, y_test = fmnist_test.data, fmnist_test.targets

class FMNISTDataset(Dataset):
 def __init__(self, x, y):
 x = x.view(-1,28*28).float()/255
 self.x, self.y = x, y
 def __getitem__(self, ix):
 return self.x[ix].to(device), self.y[ix].to(device)
 def __len__(self):
 return len(self.x)

train_dataset = FMNISTDataset(x_train, y_train)
train_dl = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_dataset = FMNISTDataset(x_test, y_test)
test_dl = DataLoader(test_dataset, batch_size=32, shuffle=True)

■ Let’s start by downloading the dataset:

import torch
from torchvision import datasets
from torch.utils.data import Dataset, DataLoader

device = 'cuda' if torch.cuda.is_available() else 'cpu'
fmnist_train = datasets.FashionMNIST('~/data/FMNIST', download=True, train=True)
fmnist_test = datasets.FashionMNIST('~/data/FMNIST', download=True, train=False)
x_train, y_train = fmnist_train.data, fmnist_train.targets
x_test, y_test = fmnist_test.data, fmnist_test.targets

class FMNISTDataset(Dataset):
 def __init__(self, x, y):
 x = x.view(-1,28*28).float()/255
 self.x, self.y = x, y
 def __getitem__(self, ix):
 return self.x[ix].to(device), self.y[ix].to(device)
 def __len__(self):
 return len(self.x)

train_dataset = FMNISTDataset(x_train, y_train)
train_dl = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_dataset = FMNISTDataset(x_test, y_test)
test_dl = DataLoader(test_dataset, batch_size=32, shuffle=True)

Loading the Data and DataLoaders

Loads the Fashion MNIST
training and testing data.

Detects the GPU

Creates a Dataset class that
preprocesses the data (reshapes
and rescales it).

Define the Dataloaders, that
coordinate how the dat will be
read.

Visualizing the data

■ We also check a bit of how the data looks like:

■ Following the (N,C,H,W), we know that
● The training set has 60000 points (N), of 1 channel each (C), and each points has height 28 (H)

and width 28 (W). The same for the testing set, but with 10000 samples (N).
● There are 60000 scalar labels for training and 10000 for testing.

■ We can furthermore read a few data points and their labels:

print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)

torch.Size([60000, 28, 28]) torch.Size([60000])
torch.Size([10000, 28, 28]) torch.Size([10000])

import matplotlib.pyplot as plt
plt.figure(figsize=(10,3))
for i in range(4):
 plt.subplot(1,4,i+1)
 plt.imshow(x_train[i])
 plt.title(f"Label {y_train[i]}")
plt.show()

Creating the network and visualizing it

■ Today, we’ll use nn.Sequential() to create a NN of one hidden layer with 1k units:

■ We also introduce the summary function to visualize the network:

import torch.nn as nn
model = nn.Sequential(nn.Linear(28 * 28, 1000), nn.ReLU(), nn.Linear(1000, 10)).to(device)

In order to install torchsummary, run
‘pip install torch_summary’
from torchsummary import summary
summary(model, (1, 28*28))

--
 Layer (type) Output Shape Param #
==
 Linear-1 [-1, 1, 1, 1000] 785,000
 ReLU-2 [-1, 1, 1, 1000] 0
 Linear-3 [-1, 1, 1, 10] 10,010
==
Total params: 795,010
Trainable params: 795,010
Non-trainable params: 0
--
Input size (MB): 0.00
Forward/backward pass size (MB): 0.02
Params size (MB): 3.03
Estimated Total Size (MB): 3.05
--

where (1, 28*28) is the size
of the model’s input (matrices
of size 1×784).

■ Note that we need to learn
almost 800k weights!

Defining the loss and the optimizer

■ Today, we also choose the Cross Entropy as our loss function and ADAM as our
optimizer with 0.001 as the learning rate:

■ Like we did last time, we define two auxiliary functions: one to do all the steps for
training and the other to compute classification accuracies.

def train_batch(x, y, model, opt, loss_fn):
 model.train()

 opt.zero_grad() # Flush memory
 batch_loss = loss_fn(model(x), y) # Compute loss
 batch_loss.backward() # Compute gradients
 opt.step() # Make a GD step

 return batch_loss.detach().cpu().numpy()

@torch.no_grad()
def accuracy(x, y, model):
 model.eval()

 prediction = model(x)
 argmaxes = prediction.argmax(dim=1)
 s = torch.sum((argmaxes == y).float())/len(y)

 return s.cpu().numpy()

from torch.optim import Adam
loss_fn = nn.CrossEntropyLoss()
opt = Adam(model.parameters(), lr=1e-3)

Training the network

■ Then, we train the network:

import numpy as np
losses, accuracies, n_epochs = [], []
n_epochs = 5
for epoch in range(n_epochs):
 print(f"Running epoch {epoch + 1} of {n_epochs}")

 epoch_losses, epoch_accuracies = [], []
 for batch in train_dl:
 x, y = batch
 batch_loss = train_batch(x, y, model, opt, loss_func)
 epoch_losses.append(batch_loss)
 epoch_loss = np.mean(epoch_losses)

 for batch in train_dl:
 x, y = batch
 batch_acc = accuracy(x, y, model)
 epoch_accuracies.append(batch_acc)
 epoch_accuracy = np.mean(epoch_accuracies)

 losses.append(epoch_loss)
 accuracies.append(epoch_accuracy)

■ And visualize how it did during training:

import matplotlib.pyplot as plt
plt.figure(figsize=(13,3))
plt.subplot(121)
plt.title('Training Loss value over epochs')
plt.plot(np.arange(n_epochs) + 1, losses)
plt.subplot(122)
plt.title('Testing Accuracy value over epochs')
plt.plot(np.arange(n_epochs) + 1, accuracies)

■ This learning procedure (of 800k
weights) took around 43.6 s.

Testing the learned classifier

■ Finally, we can test our classifier (running again may give be slightly different results):

■ When we did this same procedure with the same parameters on the MNIST digit dataset,
we got 96% testing accuracy.

■ This shows how much harder Fashion MNIST is and that we need more to use more
techniques to improve its performance.

■ How can we improve this testing result without adding many more weights?

epoch_accuracies = []
for batch in test_dl:
 x, y = batch
 batch_acc = accuracy(x, y, model)
 epoch_accuracies.append(batch_acc)

print(f"Test accuracy: {np.mean(epoch_accuracies)}")

Test accuracy: 0.8813897967338562

The Convolution Operation

1

3

2

4

1

5

9

2

6

10

3

7

11

4

8

12

13 14 15 16

A B A ⨂ B■ A very important operation in our solution to
better our performance is the Convolution.

■ Take two matrices A ∈ ℝm×n and B ∈ ℝp×q.
■ The convolution between A and B, denoted

here as A ⨂ B is another matrix, C, such that:

■ Despite its apparent complexity, it is quite simple: we are simply “scanning” matrix A
with windows of the size of matrix B and, as we scan, we multiply all elements of the
window in A with B element wise, and finally sum the multiplication results up.

■ In this case, the matrix B, which is sweeping over A, is called kernel or filter and the
convolution process is sometimes called filtering.

The Convolution Operation

1

3

2

4

1

5

9

2

6

10

3

7

11

4

8

12

13 14 15 16

A B

44

A ⨂ B

1×1 + 2×2 + 5×3 + 6×4 = 44

■ A very important operation in our solution to
better our performance is the Convolution.

■ Take two matrices A ∈ ℝm×n and B ∈ ℝp×q.
■ The convolution between A and B, denoted

here as A ⨂ B is another matrix, C, such that:

■ Despite its apparent complexity, it is quite simple: we are simply “scanning” matrix A
with windows of the size of matrix B and, as we scan, we multiply all elements of the
window in A with B element wise, and finally sum the multiplication results up.

■ In this case, the matrix B, which is sweeping over A, is called kernel or filter and the
convolution process is sometimes called filtering.

The Convolution Operation

1

3

2

4

1

5

9

2

6

10

3

7

11

4

8

12

13 14 15 16

A B

44 54

A ⨂ B

2×1 + 3×2 + 6×3 + 7×4 = 54

■ A very important operation in our solution to
better our performance is the Convolution.

■ Take two matrices A ∈ ℝm×n and B ∈ ℝp×q.
■ The convolution between A and B, denoted

here as A ⨂ B is another matrix, C, such that:

■ Despite its apparent complexity, it is quite simple: we are simply “scanning” matrix A
with windows of the size of matrix B and, as we scan, we multiply all elements of the
window in A with B element wise, and finally sum the multiplication results up.

■ In this case, the matrix B, which is sweeping over A, is called kernel or filter and the
convolution process is sometimes called filtering.

The Convolution Operation

1

3

2

4

1

5

9

2

6

10

3

7

11

4

8

12

13 14 15 16

A B

44 54 64

A ⨂ B

3×1 + 4×2 + 7×3 + 8×4 = 64

■ A very important operation in our solution to
better our performance is the Convolution.

■ Take two matrices A ∈ ℝm×n and B ∈ ℝp×q.
■ The convolution between A and B, denoted

here as A ⨂ B is another matrix, C, such that:

■ Despite its apparent complexity, it is quite simple: we are simply “scanning” matrix A
with windows of the size of matrix B and, as we scan, we multiply all elements of the
window in A with B element wise, and finally sum the multiplication results up.

■ In this case, the matrix B, which is sweeping over A, is called kernel or filter and the
convolution process is sometimes called filtering.

The Convolution Operation

1

3

2

4

1

5

9

2

6

10

3

7

11

4

8

12

13 14 15 16

A B

44

84

54 64

A ⨂ B

5×1 + 6×2 + 9×3 + 10×4 = 84

■ A very important operation in our solution to
better our performance is the Convolution.

■ Take two matrices A ∈ ℝm×n and B ∈ ℝp×q.
■ The convolution between A and B, denoted

here as A ⨂ B is another matrix, C, such that:

■ Despite its apparent complexity, it is quite simple: we are simply “scanning” matrix A
with windows of the size of matrix B and, as we scan, we multiply all elements of the
window in A with B element wise, and finally sum the multiplication results up.

■ In this case, the matrix B, which is sweeping over A, is called kernel or filter and the
convolution process is sometimes called filtering.

The Convolution Operation

1

3

2

4

1

5

9

2

6

10

3

7

11

4

8

12

13 14 15 16

A B

44

84

54

94

 64

A ⨂ B

6×1 + 7×2 + 10×3 + 11×4 = 94

■ A very important operation in our solution to
better our performance is the Convolution.

■ Take two matrices A ∈ ℝm×n and B ∈ ℝp×q.
■ The convolution between A and B, denoted

here as A ⨂ B is another matrix, C, such that:

■ Despite its apparent complexity, it is quite simple: we are simply “scanning” matrix A
with windows of the size of matrix B and, as we scan, we multiply all elements of the
window in A with B element wise, and finally sum the multiplication results up.

■ In this case, the matrix B, which is sweeping over A, is called kernel or filter and the
convolution process is sometimes called filtering.

The Convolution Operation

1

3

2

4

1

5

9

2

6

10

3

7

11

4

8

12

13 14 15 16

A B

44

84

54

94

 64

104

124 134 144

A ⨂ B

And so on …

■ A very important operation in our solution to
better our performance is the Convolution.

■ Take two matrices A ∈ ℝm×n and B ∈ ℝp×q.
■ The convolution between A and B, denoted

here as A ⨂ B is another matrix, C, such that:

■ Despite its apparent complexity, it is quite simple: we are simply “scanning” matrix A
with windows of the size of matrix B and, as we scan, we multiply all elements of the
window in A with B element wise, and finally sum the multiplication results up.

■ In this case, the matrix B, which is sweeping over A, is called kernel or filter and the
convolution process is sometimes called filtering.

Strides and paddings

■ The final convolved matrix A ⨂ B has a size that depends on the sizes of A and B.
■ In order to control the final size, we can change the convolution operation in two ways:

● By changing the convolutional stride: the stride is the step you take when moving from one
window to the next when sweeping. In usual convolution, the stride is 1. Below, it is 2:

● Via padding: add a frame of zero valued entries around the matrix being swept by the kernel.

Strides and paddings

■ The stride (skipping more entries as we sweep) and the mount of padding (the
“thickness” of the frame) are then parameters of our convolution operation*.

■ We can also have both strides and padding together:

■ There are other changes one can make in order to increase the size of the output matrix,
compared to the input matrix.

■ This operation is called a Deconvolution operation, which is crucial in many Deep
Learning solutions for Computer Vision (more on it later in the course).

* All the animations for padding and strides were taken from this very pedagogical paper and github account.

https://arxiv.org/pdf/1603.07285.pdf
https://github.com/vdumoulin/conv_arithmetic

Convolution as a Neural Network Layer

x1

x2

1

h1

h2

h3

Convolutional Layer

x3

x4

x5

x6

x7

x8

x9

h4

h5

h6

h7

h8

h9

1

7

13

3

9

15

5

11

17

w1

w4

w7

w2

w5

w8

w3

w6

w9

1

3

5

7

9

11

13

15

17

⨂ =

a

a

a

a

a

a

a

a

a

h1

h4

h7

h2

h5

h8

h3

h6

h9

w0+

Convolution Operation

■ Convolutions can be implemented as a NN layer,
called Convolutional Layer (ConvLayer).

■ In it, we only need to zero many of the
connections from its input to output (according to
the convolution step) and keep the weights the
same across units.

bias term

+

Convolution as a Neural Network Layer

x1

x2

1

h1

h2

h3

Convolutional Layer

x3

x4

x5

x6

x7

x8

x9

h4

h5

h6

h7

h8

h9

1

7

13

3

9

15

5

11

17

w1

w4

w7

w2

w5

w8

w3

w6

w9

1

3

5

7

9

11

13

15

17

⨂ =

a

a

a

a

a

a

a

a

a

h1

h4

h7

h2

h5

h8

h3

h6

h9

w0

Convolution Operation

w0

w5

w6

w8

w9

■ Convolutions can be implemented as a NN layer,
called Convolutional Layer (ConvLayer).

■ In it, we only need to zero many of the
connections from its input to output (according to
the convolution step) and keep the weights the
same across units.

Convolution as a Neural Network Layer

x1

x2

1

h1

h2

h3

Convolutional Layer

x3

x4

x5

x6

x7

x8

x9

h4

h5

h6

h7

h8

h9

1

7

13

3

9

15

5

11

17

w1

w4

w7

w2

w5

w8

w3

w6

w9

1

3

5

7

9

11

13

15

17

⨂ =

a

a

a

a

a

a

a

a

a

h1

h4

h7

h2

h5

h8

h3

h6

h9

w0+

Convolution Operation

■ Convolutions can be implemented as a NN layer,
called Convolutional Layer (ConvLayer).

■ In it, we only need to zero many of the
connections from its input to output (according to
the convolution step) and keep the weights the
same across units.

Weights’ notations omitted
below for clarity

Convolution as a Neural Network Layer

x1

x2

1

h1

h2

h3

Convolutional Layer

x3

x4

x5

x6

x7

x8

x9

h4

h5

h6

h7

h8

h9

1

7

13

3

9

15

5

11

17

w1

w4

w7

w2

w5

w8

w3

w6

w9

1

3

5

7

9

11

13

15

17

⨂ =

a

a

a

a

a

a

a

a

a

h1

h4

h7

h2

h5

h8

h3

h6

h9

w0+

Convolution Operation

■ Convolutions can be implemented as a NN layer,
called Convolutional Layer (ConvLayer).

■ In it, we only need to zero many of the
connections from its input to output (according to
the convolution step) and keep the weights the
same across units.

Weights’ notations omitted
below for clarity

Convolution as a Neural Network Layer

x1

x2

1

h1

h2

h3

Convolutional Layer

x3

x4

x5

x6

x7

x8

x9

h4

h5

h6

h7

h8

h9

1

7

13

3

9

15

5

11

17

w1

w4

w7

w2

w5

w8

w3

w6

w9

1

3

5

7

9

11

13

15

17

⨂ =

a

a

a

a

a

a

a

a

a

h1

h4

h7

h2

h5

h8

h3

h6

h9

w0+

Convolution Operation

■ Convolutions can be implemented as a NN layer,
called Convolutional Layer (ConvLayer).

■ In it, we only need to zero many of the
connections from its input to output (according to
the convolution step) and keep the weights the
same across units.

Weights’ notations omitted
below for clarity

Convolution as a Neural Network Layer

x1

x2

1

h1

h2

h3

Convolutional Layer

x3

x4

x5

x6

x7

x8

x9

h4

h5

h6

h7

h8

h9

1

7

13

3

9

15

5

11

17

w1

w4

w7

w2

w5

w8

w3

w6

w9

1

3

5

7

9

11

13

15

17

⨂ =

a

a

a

a

a

a

a

a

a

h1

h4

h7

h2

h5

h8

h3

h6

h9

w0+

w0

w1

w2

w3

w4

w5

w6

w7

w8

w9

Convolution Operation

■ Convolutions can be implemented as a NN layer,
called Convolutional Layer (ConvLayer).

■ In it, we only need to zero many of the
connections from its input to output (according to
the convolution step) and keep the weights the
same across units.

Convolution as a Neural Network Layer

x1

x2

1

h1

h2

h3

Convolutional Layer

x3

x4

x5

x6

x7

x8

x9

h4

h5

h6

h7

h8

h9

1

7

13

3

9

15

5

11

17

w1

w4

w7

w2

w5

w8

w3

w6

w9

1

3

5

7

9

11

13

15

17

⨂ =

a

a

a

a

a

a

a

a

a

h1

h4

h7

h2

h5

h8

h3

h6

h9

w0+

Convolution Operation

■ Convolutions can be implemented as a NN layer,
called Convolutional Layer (ConvLayer).

■ In it, we only need to zero many of the
connections from its input to output (according to
the convolution step) and keep the weights the
same across units.

Weights’ notations omitted
below for clarity

Multiple Filters

■ Notice that we only had to learn 10 weights in the convolutional layer from the last slide.
■ In fact, that wouldn't change even for larger inputs, if we keep the same kernel size! This

opens up the possibility of learning many filters without a big computation burden:

■ Note that, in this process, we turned a matrix into a tensor of multiple channels.

… …

…
…⨂

Original Matrix K filters K filtered matrices Stack up matrices
in one tensor of K

channels

Convolution with Tensors

■ We can generalize the convolution to images (or tensors in general) that have more
than one channel.

■ In that case, the kernels will have the same number of channels as the input image:

Convolution with Tensors

■ We can generalize the convolution to images (or tensors in general) that have more
than one channel.

■ In that case, the kernels will have the same number of channels as the input image:

* Check out this animation and more in this link.

■ In the example on the left*, we have:
● An input tensor of shape (8,7,6) ,

i.e, 8 channels of size 7×6.
● A total of 8 filters/kernels, each of

shape (8,3,3) .
● An output tensor of shape (8,5,4) .

■ Each channel in of the output tensor
(represented by the color of its
correspondent filter) is called a
feature map in deep learning lingo.

https://animatedai.github.io/

The Max-pooling Operation

■ Another important operation and layer in Deep Learning is called Pooling (layer).
■ The idea is to sweep the initial matrix as in a convolution, but now you apply a standard

not-learnable operation for each window. The common operations are:
● Average-pooling: take the mean of the values in each window,
● Max-pooling: pick the maximum of each window (by far the most used pooling type.)

■ In the following, you have an example of the 2×2 Max-pooling with stride 2:

■ Max-pool layers are used to downscale the input by extracting the most important feature.

1

5

9

2

6

10

3

7

11

4

8

12

13 14 15 16

1

5

9

2

6

10

3

7

11

4

8

12

13 14 15 16

6

14

8

16

Original Matrix Max pooled Matrix

Pick the largest value in
each block.

Sweep the matrix
using stride 2.

All swept windows

Exercise (In pairs)

■ Using the two matrices on the right, perform the following
operations:

a. Perform a 2×2 Max-pooling with stride 2 on A to create C.
b. Add 2 padding on C and compute its convolution with B to

create D.
c. Compute the convolution of D with B as a kernel with stride 3.

■ Write down how we could define a network with batch
normalization and dropout using nn.Sequential()
instead of defining the neural net class.

■ During backpropagation, one will have to the derivative of
the max-pooling layer if it is present. How does one compute
that derivative?

 7

25

9

5

19

10

10

12

11

4

8

12

12

5

9

2

21

10

29

7

11

4

8

12

13 14 15 16

28

5

21

20

20

10

3

32

11

1

36

9

2

6

10

3

7

11

13 14 15

Matrix A

Matrix B

1

1

1

1

-2

1

1

1

1

Convolutional Neural Networks

■ With convolutional and pooling layers, we create a Convolutional Neural Network (CNN).
■ In image classification tasks, these layers are used as a feature learning step, as they

● Extract relevant features (convolutional layers, more on it later in the course)
● Aggregate information (polling layers).

■ After the features are learned, we can flatten them and proceed with our usual Multilayer
Perceptron (a series of dense/linear layers) for classification:

Creating a CNN in PyTorch

■ In the same way that PyTorch offers nn.Linear() to define dense layers, it defines the
module nn.Conv2d() to define convolutional layers:

■ Here’s what these parameters mean*:
● in_channels and out_channels: the number of channels (not the size of each datapoint) of

the input and output. For example, if the inputs are grayscale images, and you want to use 32
filters in that layer, in_channels = 1 and out_channels = 32 .

● kernel_size: the size of the kernel used in all filters of that layer. Inputting “3” here will give
you kernels of size 3×3. All kernels in a given layer have the same size.

● stride and padding: sets the number of stride and the padding “thickness”. By default, the
convolutions will sweep all the possible windows of the unpadded input.

● bias: whether you wish to add a bias term (w0 in this slide).

nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True)

*Check the documentation here for more details on the layer and on other possible parameters.

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

Creating a CNN in PyTorch

■ Next, we use PyTorch’s nn.MaxPool2d() module to define a Max-pooling layer*:

■ The kernel size and padding parameters work exactly like in the nn.Conv2d() module.
■ The stride parameter, however, is set to be of the same size as the kernel size if

stride=None.
■ In PyTorch, to flatten the output of a ConvLayer to prepare it for the Linear layers, we can

use two approaches:
● If you are defining a class that inherits nn.Module , you can use torch.view() in its

forward() method to reshape the output of the ConvLayer.
● When using nn.Sequential() to define a network, we have to add a nn.Flatten()

module after the layer you want to flatten.

torch.nn.MaxPool2d(kernel_size, stride=None, padding=0)

*Check the documentation here for more details on the layer and on other possible parameters.

https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html

Creating the CNN in PyTorch

■ We define the following CNN:

■ It has only two ConvLayers, that learn
64 and 128 filters, resp., each followed
by a 2×2 Max-pool layer.

■ The CNN part is then followed by a
dense layer with 200 units.

model = nn.Sequential(nn.Conv2d(1,64,kernel_size=3),
 nn.ReLU(),
 nn.MaxPool2d(2),
 nn.Conv2d(64, 128, kernel_size=3),
 nn.ReLU(),
 nn.MaxPool2d(2),
 nn.Flatten() ,
 nn.Linear(3200, 200),
 nn.ReLU(),
 nn.Linear(200, 10)
).to(device)

--
 Layer (type) Output Shape Param #
==
 Conv2d-1 [-1, 64, 26, 26] 640
 ReLU-2 [-1, 64, 26, 26] 0
 MaxPool2d-3 [-1, 64, 13, 13] 0
 Conv2d-4 [-1, 128, 11, 11] 73,856
 ReLU-5 [-1, 128, 11, 11] 0
 MaxPool2d-6 [-1, 128, 5, 5] 0
 Flatten-7 [-1, 3200] 0
 Linear-8 [-1, 200] 640,200
 ReLU-9 [-1, 200] 0
 Linear-10 [-1, 10] 2,010
==
Total params: 716,706
Trainable params: 716,706
Non-trainable params: 0
---(...)

■ If we print our CNN’s summary we get:

from torchsummary import summary
summary(model, (1, 28, 28)) # Notice the new shape

Notice how many
weights to learn!

■ Because we want to use the images in their original shapes, we don’t need to flatten them
when defining the Dataset. So our new class definition to (compare it to the original):

■ Note that we explicitly show that each datapoint has one channel (since they are
grayscale images) and size 28×28.

■ Defining the data to show how many channels it has is necessary when using ConvLayers
in the beginning of your model.

Changing the dataset class

class FMNISTDataset(Dataset):
 def __init__(self, x, y):
 x = x.view(-1, 1, 28, 28)
 x = x.float()/255
 self.x, self.y = x, y
 def __getitem__(self, ix):
 return self.x[ix].to(device),self.y[ix].to(device)
 def __len__(self):
 return len(self.x)

■ Now, we can train our Convolutional Neural Network under the exact same parameters
as the Multilayer Perceptron of the previous slides and compare their performance:

■ If we test our learned CNN, we also see the improvement compared to the MLP one:

■ In sum: with fewer weights to be learned, we were able to improve our results by using
ConvLayers and Max-pooling, all thanks to the magic of feature learning!

Training and testing the CNN

MLP – n. weights: 795k training time: 43s CNN – n. weights: 716k, training time: 54s

Test accuracy: 0.9146365523338318

--
 Layer (type) Output Shape Param #
==
 Conv2d-1 [-1, 64, 26, 26] 640
 ReLU-2 [-1, 64, 26, 26] 0
 MaxPool2d-3 [-1, 64, 13, 13] 0
 Conv2d-4 [-1, 128, 11, 11] 73,856
 ReLU-5 [-1, 128, 11, 11] 0
 MaxPool2d-6 [-1, 128, 5, 5] 0
 Flatten-7 [-1, 3200] 0
 Linear-8 [-1, 200] 640,200
 ReLU-9 [-1, 200] 0
 Linear-10 [-1, 10] 2,010
==
Total params: 716,706
Trainable params: 716,706
Non-trainable params: 0
---(...)

Exercise (In pairs)

■ On the right you have the
summary of today’s CNN.
Explain:
● Why does the output shape

progresses like depicted?
● Why does each layer have

the number of weights
(parameters) it says it has.

Here, the input shape is (1, 28,
28) and the convolutions have
3×3 kernels.

Click here to open code in Colab

https://colab.research.google.com/drive/1n57q3H9Xgd2dQ3Xa7aObqvFr-uBBsdYA?usp=sharing
https://colab.research.google.com/drive/1n57q3H9Xgd2dQ3Xa7aObqvFr-uBBsdYA?usp=sharing

Video: Go AlphaGo!

http://www.youtube.com/watch?v=53YLZBSS0cc

